DomainKeys Identified Mail (DKIM): Introduction and Overview

Eric Allman
Chief Science Officer
Sendmail, Inc.
Traditional Content Scanning is reaching its limits

Increasing interest in making life better for good players (in addition to penalizing bad players)

- Messages from good senders can be delivered without spam scanning to reduce load and avoid false positives
- Messages from known bad senders should be slowed down, carefully scanned, greylisted, challenged, or rejected outright

Good senders want an ability to demonstrate their goodness, either by Accreditation (3rd party assurance) or Reputation
“Identity-Based” Filtering

::: For most people, 90–99% of their legitimate email comes from people or entities they know
 - Notable exceptions: help desks, inquiry addresses, “info@” addresses, etc.
 - Allow (white) lists can reduce false positives
 - I’ll accept mail from my mother, my boss, or my bank without scanning

::: Also, 90–99% of their spam comes from people or entities they do not know
 - Notable exception: on-line order acknowledgments

::: Critical: must ensure sender is who they claim to be
 - ... not someone pretending to be my bank
 - Phishing usually involves identity theft
 - Authentication required
Authentication vs. Authorization

::: People often confuse the two

::: Authentication: proof that you are who you claim to be
 - Real life example: a passport

::: Authorization: what you are allowed to do, generally based on:
 - Real life example: a visa in a passport
 - Prior knowledge by recipient of who you are
 - Trusted third party accreditation
 - Local- or network-wide reputation
 - “Entry methods” such as Challenge-Response or content scanning
Overview of DKIM

Cryptography-based protocol, signs selected header fields and message body
- Merge of DomainKeys (Yahoo!) and IIM (Cisco)
- Merge created by an industry consortium
- Significant industry support (see dkim.org for a list)

Intended to allow good senders to prove that they did send a particular message, and to prevent forgers from masquerading as good senders (if those senders sign all outgoing mail)

Not an anti-spam technology by itself
DKIM Goals

- Low-cost (avoid large PKI, new Internet services)
- No trusted third parties required (e.g., key servers)
- No client User Agent upgrades required
- Minimal changes for (naïve) end users
- Validate message itself (not just path)
- Allow sender delegation (e.g., outsourcing)
- Extensible (key service, hash, public key)
- Structure usable for per-user signing
DKIM Technology

::: Signature transmitted in DKIM-Signature header field
 • DKIM-Signature is self-signed
 • Signature includes the signing identity (not inherently tied to envelope, \texttt{From:}, \texttt{Sender:}, or any other header)

::: Initially, public key stored in DNS (new RR type, fall back to TXT) in _domainkey subdomain
 • Extensible to other key delivery mechanisms

::: Namespace divided using \textit{selectors}, allowing multiple keys for aging, delegation, etc.
 • Example: selectors for departments, date ranges, or third parties

::: \textit{Sender Signing Policy} lookup for unsigned, improperly signed, or third-party signed mail
DKIM-Signature header

::: Example:

```plaintext
DKIM-Signature: a=rsa-shal; q=dns;
    d=example.com;
    i=user@eng.example.com;
    s=jun2005.eng; c=relaxed/simple;
    t=1117574938; x=1118006938;
    h=from:to:subject:date;
    b=dzdVy0fAKCdLXdJOC9G2q8LoXS1EniSb
        av+yuU4zGeeruD001szZVoG4ZHRNiYzR
    
::: DNS query will be made to:

    jun2005.eng._domainkey.example.com
```
DKIM Status and Directions

::: Currently submitted to Internet Engineering Task Force (IETF) as Internet-Drafts.

- draft-ietf-dkim-base-00.txt
- draft-allman-dkim-ssp-01.txt
- draft-fenton-dkim-threats-02.txt

::: Still some other drafts to be written

::: IETF Working Group chartered, first meeting in March

::: Several interoperating implementations, some open source

- http://sourceforge.net/projects/dkim-milter
Eric Allman
Sendmail, Inc.